TY - JOUR
T1 - Assessment of Land Surface Schemes from the WRF-Chem for Atmospheric Modeling in the Andean Region of Ecuador
AU - Parra, Rene
N1 - Publisher Copyright:
© 2023 by the author.
PY - 2023/3/6
Y1 - 2023/3/6
N2 - Surface interactions occur near the land–atmosphere interface, thus affecting the temperature, convection, boundary layer, and stability of the atmosphere. A proper representation of surface interactions is a crucial component for numerical atmospheric and air quality modeling. We assessed four land surface schemes—1. 5-layer thermal diffusion scheme (1 5-Layer); 2. unified Noah land surface model (2 Noah); 3. rapid update cycle (3 RUC) land surface model; and 4. Pleim–Xiu land surface model (4 Pleim–Xiu)—from the Weather Research and Forecasting with Chemistry (WRF-Chem V3.2) model for the purposes of atmospheric modeling in Cuenca, which is a region with a complex topography and land use configuration and which is located in the Southern Andean region, in Ecuador. For this purpose, we modeled the meteorological and air quality variables during September 2014. It was found that the meteorological and short-term air quality variables were better modeled through the 2 Noah scheme. Long-term (mean monthly) air quality variables were better modeled by the 1 5-Layer and 3 RUC options. On average, the 2 Noah scheme was better at modeling meteorology and air quality. In addition, we assessed the 2 Noah scheme combined with the urban canopy model (UCM) (5 Noah UCM), which was developed as an option to represent the urban effects at a subgrid-scale. Results indicated that the performance of the 5 Noah UCM scheme was not better at modeling than the 2 Noah scheme alone. Moreover, the 5 Noah UCM scheme notably decreased the modeling performance for carbon monoxide and fine particulate matter. These results complement previous assessments of other schemes, allowing us to recommend a basic configuration of parameters for atmospheric modeling in the Andean region of Ecuador.
AB - Surface interactions occur near the land–atmosphere interface, thus affecting the temperature, convection, boundary layer, and stability of the atmosphere. A proper representation of surface interactions is a crucial component for numerical atmospheric and air quality modeling. We assessed four land surface schemes—1. 5-layer thermal diffusion scheme (1 5-Layer); 2. unified Noah land surface model (2 Noah); 3. rapid update cycle (3 RUC) land surface model; and 4. Pleim–Xiu land surface model (4 Pleim–Xiu)—from the Weather Research and Forecasting with Chemistry (WRF-Chem V3.2) model for the purposes of atmospheric modeling in Cuenca, which is a region with a complex topography and land use configuration and which is located in the Southern Andean region, in Ecuador. For this purpose, we modeled the meteorological and air quality variables during September 2014. It was found that the meteorological and short-term air quality variables were better modeled through the 2 Noah scheme. Long-term (mean monthly) air quality variables were better modeled by the 1 5-Layer and 3 RUC options. On average, the 2 Noah scheme was better at modeling meteorology and air quality. In addition, we assessed the 2 Noah scheme combined with the urban canopy model (UCM) (5 Noah UCM), which was developed as an option to represent the urban effects at a subgrid-scale. Results indicated that the performance of the 5 Noah UCM scheme was not better at modeling than the 2 Noah scheme alone. Moreover, the 5 Noah UCM scheme notably decreased the modeling performance for carbon monoxide and fine particulate matter. These results complement previous assessments of other schemes, allowing us to recommend a basic configuration of parameters for atmospheric modeling in the Andean region of Ecuador.
KW - Cuenca
KW - land surface model
KW - lsm
KW - modeling performance
KW - parameterization
UR - http://www.scopus.com/inward/record.url?scp=85151553014&partnerID=8YFLogxK
U2 - 10.3390/atmos14030508
DO - 10.3390/atmos14030508
M3 - Artículo
AN - SCOPUS:85151553014
SN - 2073-4433
VL - 14
JO - Atmosphere
JF - Atmosphere
IS - 3
M1 - 508
ER -