Fuzzy Kalman Filter using Linear Matrix Inequalities

Hanna Aboukheir, Marco Herrera, Edinzo Iglesias, Oscar Camacho

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The Kalman filter has been extensively used in different applications due to its strengths in estimating the system states under noisy observations. In this paper, a modification of the classical Kalman filter for nonlinear state estimation is presented; firstly, a polytopic set of linear discrete-time models based on a Takagi-Sugeno inference system is used to describe the nonlinear operating region. The stabilizing gains of the linear filters are calculated using Linear Matrix Inequalities (LMI), the proposal is evaluated through simulations.

Original languageEnglish
Title of host publication2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665408738
DOIs
StatePublished - 2021
Event2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021 - Virtual, Online, Chile
Duration: 6 Dec 20219 Dec 2021

Publication series

Name2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021

Conference

Conference2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
Country/TerritoryChile
CityVirtual, Online
Period6/12/219/12/21

Keywords

  • Fuzzy Systems
  • Kalman Filtering
  • Linear Matrix Inequalities

Fingerprint

Dive into the research topics of 'Fuzzy Kalman Filter using Linear Matrix Inequalities'. Together they form a unique fingerprint.

Cite this