TY - JOUR
T1 - A Dirichlet Boundary Value Problem for Fractional Monogenic Functions in the Riemann–Liouville Sense
AU - Armendáriz, David
AU - Ceballos, Johan
AU - Di Teodoro, Antonio
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - This paper solves the Dirichlet boundary value problem of distinguishing domains for Clifford fractional–monogenic functions in Rn for fixed n, in the Riemann–Liouville sense. To do so, we use a matrix representation of the Clifford algebras. This allows us to construct computational algorithms that efficiently perform the calculations necessary to guarantee the existence of a solution for the Dirichlet boundary value problem over a properly distinguished domain. Finally, we show some explicit solutions for the Dirichlet boundary problem in R3.
AB - This paper solves the Dirichlet boundary value problem of distinguishing domains for Clifford fractional–monogenic functions in Rn for fixed n, in the Riemann–Liouville sense. To do so, we use a matrix representation of the Clifford algebras. This allows us to construct computational algorithms that efficiently perform the calculations necessary to guarantee the existence of a solution for the Dirichlet boundary value problem over a properly distinguished domain. Finally, we show some explicit solutions for the Dirichlet boundary problem in R3.
KW - Dirichlet boundary value problem
KW - Fractional Cauchy–Riemann operator
KW - Fractional monogenic functions
KW - Matrix representation of Clifford algebras
UR - http://www.scopus.com/inward/record.url?scp=85086156246&partnerID=8YFLogxK
U2 - 10.1007/s11785-020-01008-z
DO - 10.1007/s11785-020-01008-z
M3 - Artículo
AN - SCOPUS:85086156246
SN - 1661-8254
VL - 14
JO - Complex Analysis and Operator Theory
JF - Complex Analysis and Operator Theory
IS - 5
M1 - 51
ER -