A linear algebraic nonlinear superposition formula

Pilar R. Gordoa, Juan M. Conde

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

The Darboux transformation provides an iterative approach to the generation of exact solutions for an integrable system. This process can be simplified using the Bäcklund transformation and Bianchi's theorem of permutability; in this way we construct a nonlinear superposition formula, that is, an equation relating a new solution to three previous solutions. In general this equation will be a differential equation; for some examples, such as the Korteweg-de Vries equation, it is a linear algebraic equation. This last is what happens also in the case of the system discussed in this Letter. The linear algebraic nonlinear superposition formula obtained here is a new result. As an example, we use it to construct the two soliton solution, as well as special cases of this last which give rise to solutions exhibiting combinations of fission and fusion. Solutions exhibiting repeated processes of fission and fusion are new phenomena within the area of soliton equations. We also consider obtaining solutions using a symmetry approach; in this way we obtain rational solutions and also the one soliton solution.

Idioma originalInglés
Páginas (desde-hasta)287-298
Número de páginas12
PublicaciónPhysics Letters, Section A: General, Atomic and Solid State Physics
Volumen295
N.º5-6
DOI
EstadoPublicada - 1 abr. 2002
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A linear algebraic nonlinear superposition formula'. En conjunto forman una huella única.

Citar esto