A Novel Deep Learning Method for Solving PDE’s Applied to a Shallow Water Problem

Jose Palacios-García, Julio Ibarra-Fiallo, Sevando Espín-Torres

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this work we explain and implement a method that uses an artificial neural network to solve differential equations numerically. The method was applied to a model of the flow of water in an open channel described by the Saint-Venant Equations (SVE). These equations constitute a system of partial differential equations. The method was implemented in Python using the libraries Numpy and Pytorch to manage matrix operations and the construction of the artificial neural network. The results of the method were compared with a common numerical method using RK1, where an average relative error of 4,05% was obtained. The results show that the proposed method has a promising performance in the resolution of partial differential equations, especially because of the versatility that it offers to define boundary conditions in complex geometries. The execution time was comparable to traditional methods, thanks to common performance enhancements developed for training artificial neural networks. Possible improvements for further research are mentioned.

Idioma originalInglés
Título de la publicación alojadaScientific Computing and Bioinformatics and Computational Biology - 22nd International Conference, CSC 2024, and 25th International Conference, BIOCOMP 2024, Held as Part of the World Congress in Computer Science, Computer Engineering and Applied Computing, CSCE 2024
EditoresDouglas D. Hodson, Michael R. Grimaila, Torrey J. Wagner, Hamid R. Arabnia, Leonidas Deligiannidis
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas149-157
Número de páginas9
ISBN (versión impresa)9783031859014
DOI
EstadoPublicada - 2025
Evento22nd International Conference on Scientific Computing and Bioinformatics, CSC 2024, and 25th International Conference on Computational Biology, BIOCOMP 2024, held as part of the World Congress in Computer Science, Computer Engineering and Applied Computing, CSCE 2024 - Las Vegas, Estados Unidos
Duración: 22 jul. 202425 jul. 2024

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2258 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia22nd International Conference on Scientific Computing and Bioinformatics, CSC 2024, and 25th International Conference on Computational Biology, BIOCOMP 2024, held as part of the World Congress in Computer Science, Computer Engineering and Applied Computing, CSCE 2024
País/TerritorioEstados Unidos
CiudadLas Vegas
Período22/07/2425/07/24

Huella

Profundice en los temas de investigación de 'A Novel Deep Learning Method for Solving PDE’s Applied to a Shallow Water Problem'. En conjunto forman una huella única.

Citar esto