TY - JOUR
T1 - A novel photocrosslinkable and cytocompatible chitosan coating for Ti6Al4V surfaces
AU - Zujur, Denise
AU - Moret, Josnell
AU - Rodriguez, Dubrasvka
AU - Cruz, Lauren
AU - Lira, Joaquin
AU - Gil, Linda
AU - Dominguez, Ernic
AU - Alvarez-Barreto, Jose F.
N1 - Publisher Copyright:
© 2015 Wichtig Publishing.
PY - 2015
Y1 - 2015
N2 - Background: In this work, chitosan (CH) was used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. Methods: The Ti6Al4V surface was sandblasted with alumina particles. CH was chemically modified, via carbodiimide chemistry, using lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photocrosslinkable, respectively. The reaction was verified by FTIR, NMR and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing polymer crosslinking and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating’s cytocompatibility was determined in vitro through the culture of rat bone marrow mesenchymal stem cells, using an MTT assay, with their morphology assessed by SEM. Results: The developed coating behaved as a hydrogel on the Ti6Al4V and was stable on the surface. FTIR and NMR confirmed the crosslinking mechanism, based on an arile ring expansion, and subsequent reaction with the CH amine groups. Furthermore, the coating was able to support cell proliferation and osteogenic differentiation. Conclusions: UV crosslinking of CH is easy to apply and has potential for future metallic implant surface modifications. Due to its nature as a hydrogel, the coating could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue–implant interface.
AB - Background: In this work, chitosan (CH) was used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. Methods: The Ti6Al4V surface was sandblasted with alumina particles. CH was chemically modified, via carbodiimide chemistry, using lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photocrosslinkable, respectively. The reaction was verified by FTIR, NMR and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing polymer crosslinking and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating’s cytocompatibility was determined in vitro through the culture of rat bone marrow mesenchymal stem cells, using an MTT assay, with their morphology assessed by SEM. Results: The developed coating behaved as a hydrogel on the Ti6Al4V and was stable on the surface. FTIR and NMR confirmed the crosslinking mechanism, based on an arile ring expansion, and subsequent reaction with the CH amine groups. Furthermore, the coating was able to support cell proliferation and osteogenic differentiation. Conclusions: UV crosslinking of CH is easy to apply and has potential for future metallic implant surface modifications. Due to its nature as a hydrogel, the coating could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue–implant interface.
KW - Bioactive coating
KW - Chitosan
KW - Hydrogel
KW - Photocrosslinking
KW - Ti6Al4V
UR - http://www.scopus.com/inward/record.url?scp=84944631489&partnerID=8YFLogxK
U2 - 10.5301/jabfm.5000227
DO - 10.5301/jabfm.5000227
M3 - Artículo
C2 - 26108425
AN - SCOPUS:84944631489
SN - 2280-8000
VL - 13
SP - e210-e219
JO - Journal of Applied Biomaterials and Functional Materials
JF - Journal of Applied Biomaterials and Functional Materials
IS - 3
ER -