TY - JOUR
T1 - Adsorption enhanced photocatalytic degradation of Rhodamine B using GdxBi1-xFeO3@SBA-15 (x= 0, 0.05, 0.10, 0.15) nanocomposites under visible light irradiation
AU - Cadenbach, Thomas
AU - Benitez, Maria J.
AU - Tirado, Sofia Andrade
AU - Ochoa-Herrera, Valeria
AU - Debut, Alexis
AU - Vizuete, Karla
N1 - Publisher Copyright:
© 2021 Elsevier Ltd and Techna Group S.r.l.
PY - 2021/10/15
Y1 - 2021/10/15
N2 - BiFeO3 nanomaterials have recently generated much interest due to their relatively narrow band gap energies (~2.0–2.8 eV), their stability and low cost which leads to effective visible-light photocatalysts for water splitting and for the degradation of organic pollutants. Here, we show that very high removal efficiency of the organic dye Rhodamine B can be achieved using GdxBi1-xFeO3@SBA-15 nanocomposites (x = 0, 0.05. 0.10, 0.15) under visible light irradiation. Specifically, we study the photocatalytic degradation of Rodamine B using the above nanocomposite materials, with pore volume loadings of 5–25%, prepared by a wet-impregnation nanocasting technique with pre-fabricated metal tartarates, as metal precursors, and mesoporous silica SBA-15, as a host matrix. We find that the best removal performance is achieved by a 10 vol% Gd0.05Bi0.95FeO3@SBA-15 sample, shown by a complete dye degradation in approximately 3 h using very low concentrations of the actural active photocatalyst. The superior efficiencies of the nanocomposites, which outperformed their parent compounds, i.e. GdxBi1-xFeO3 nanoparticles as well as unfilled SBA-15, are attributable to a synergistic adsorption enhanced photocatalytic degradation process. The possible mechanism in the photodegradation process was investigated and discussed on the basis of trapping experiments.
AB - BiFeO3 nanomaterials have recently generated much interest due to their relatively narrow band gap energies (~2.0–2.8 eV), their stability and low cost which leads to effective visible-light photocatalysts for water splitting and for the degradation of organic pollutants. Here, we show that very high removal efficiency of the organic dye Rhodamine B can be achieved using GdxBi1-xFeO3@SBA-15 nanocomposites (x = 0, 0.05. 0.10, 0.15) under visible light irradiation. Specifically, we study the photocatalytic degradation of Rodamine B using the above nanocomposite materials, with pore volume loadings of 5–25%, prepared by a wet-impregnation nanocasting technique with pre-fabricated metal tartarates, as metal precursors, and mesoporous silica SBA-15, as a host matrix. We find that the best removal performance is achieved by a 10 vol% Gd0.05Bi0.95FeO3@SBA-15 sample, shown by a complete dye degradation in approximately 3 h using very low concentrations of the actural active photocatalyst. The superior efficiencies of the nanocomposites, which outperformed their parent compounds, i.e. GdxBi1-xFeO3 nanoparticles as well as unfilled SBA-15, are attributable to a synergistic adsorption enhanced photocatalytic degradation process. The possible mechanism in the photodegradation process was investigated and discussed on the basis of trapping experiments.
KW - BiFeO
KW - Dye
KW - Nanocasting
KW - Nanoparticles
KW - Photocatalysis
KW - Rhodamine B
KW - SBA-15
UR - http://www.scopus.com/inward/record.url?scp=85110488284&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2021.07.077
DO - 10.1016/j.ceramint.2021.07.077
M3 - Artículo
AN - SCOPUS:85110488284
SN - 0272-8842
VL - 47
SP - 29139
EP - 29148
JO - Ceramics International
JF - Ceramics International
IS - 20
ER -