An approximate universal energy functional in density functional theory

Eduardo V. Ludeña

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

43 Citas (Scopus)

Resumen

Using Harriman's orthonormal set, a closed expression for the reduced first order density operator γ1(1,2)=ρ(1)1/2ρ(2) 1/2G(1,2) is obtained in the context of the independent particle approximation. It is shown that G(1,2) is given by G(1,2)=(1/n)exp{i[(n+1)/2] F(1,2)}×[sin1/2nF(1,2)]/[sin1/2F(1,2)], where F(1,2)=f(r 2)-f(r1). Using this representation γ1(1, 2), an approximate universal functional of the energy which is given solely in terms of ρ is constructed. In particular, closed analytic expressions for the kinetic and exchange energies are explicitly derived. The simplifications brought about in these expressions by spherical symmetry are also discussed.

Idioma originalInglés
Páginas (desde-hasta)6174-6181
Número de páginas8
PublicaciónJournal of Chemical Physics
Volumen79
N.º12
DOI
EstadoPublicada - 1983
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'An approximate universal energy functional in density functional theory'. En conjunto forman una huella única.

Citar esto