An evolutionary intelligent approach for the LTI systems identification in continuous time

Luis Morales, Oscar Camacho, Danilo Chávez, José Aguilar

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Identification and modeling of systems are the first stage for development and design of controllers. For this purpose, as an alternative to conventional modeling approaches we propose using two methods of evolutionary computing: Genetic Algorithms (GA) and Particle Swarm Optimization (PSO to create an algorithm for modeling Linear Time Invariant (LTI) systems of different types. Integral Square Error (ISE) is the objective function to minimize, which is calculated between the outputs of the real system and the model. Unlike other works, the algorithms make a search of the most approximate model based on four of the most common ones found in industrial processes: systems of first order, first order plus time delay, second order and inverse response. The estimated models by our algorithms are compared with the obtained by other analytical and heuristic methods, in order to validate the results of our approach.

Idioma originalInglés
Título de la publicación alojadaTechnology Trends - 4th International Conference, CITT 2018, Revised Selected Papers
EditoresMiguel Botto-Tobar, Mayra D’Armas, Miguel Zúñiga Sánchez, Miguel Zúñiga-Prieto, Guillermo Pizarro
EditorialSpringer Verlag
Páginas430-445
Número de páginas16
ISBN (versión impresa)9783030055318
DOI
EstadoPublicada - 2019
Publicado de forma externa
Evento4th International Conference on Technology Trends, CITT 2018 - Babahoyo, Ecuador
Duración: 29 ago. 201831 ago. 2018

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen895
ISSN (versión impresa)1865-0929

Conferencia

Conferencia4th International Conference on Technology Trends, CITT 2018
País/TerritorioEcuador
CiudadBabahoyo
Período29/08/1831/08/18

Huella

Profundice en los temas de investigación de 'An evolutionary intelligent approach for the LTI systems identification in continuous time'. En conjunto forman una huella única.

Citar esto