An Integral Representation Formula for Multi Meta- φ -Monogenic Functions of Second Class

Eusebio Ariza García, Antonio Di Teodoro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

Consider the following operator (Formula presented.)where φ(j) is a Clifford-valued function and λ(j) is a Clifford-constant defined by (Formula presented.) with m= m1+ ⋯ + mn, a1= m0= 0 and aj= m1+ ⋯ + mj- 1 for j= 2 , … , n; and φi(j) can be real-valued functions defined in Rm1+1×Rm2+1×⋯×Rmn+1. λi(j) are real numbers for i= 0 , 1 , … , mj and j= 1 , … , n. A function u is multi meta- φ-monogenic of second class, in several variables x(j), for j= 1 , … , n, if Dφ(j),λ(j)u=0.In this paper we give a Cauchy-type integral formula for multi meta-φ-monogenic of second class operator in one way by iteration and in the second way by the use of the construction of the Levi function. Also, in this work, we define a multi meta-φ-monogenic function of first class with the help of the Clifford type algebras depending on parameters.

Idioma originalInglés
Páginas (desde-hasta)375-392
Número de páginas18
PublicaciónComplex Analysis and Operator Theory
Volumen11
N.º2
DOI
EstadoPublicada - 1 feb. 2017
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'An Integral Representation Formula for Multi Meta- φ -Monogenic Functions of Second Class'. En conjunto forman una huella única.

Citar esto