TY - JOUR
T1 - An ozonesonde evaluation of spaceborne observations in the Andean tropics
AU - Cazorla, María
AU - Herrera, Edgar
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Satellite observations of ozone in the tropics have feedback from in situ measurements at sea level stations, but the tropical Andes is a region that is yet to be included in systematic validations. In this work, ozonesondes launched from the equatorial Andes were used to evaluate total column ozone (TCO) measured by spaceborne sensors TROPOMI/S5P (2018–2021), GOME-2/MetOp-B, OMI/Aura, and OMPS/Suomi NPP (2014–2021). Likewise, we evaluated tropospheric column ozone (TrCO) measured by the first two. Additionally, we evaluated TCO and TrCO from reanalysis products MERRA-2 and CAMS-EAC4. Results indicate that TCO observations by OMPS/Suomi NPP produce the closest comparison to ozonesondes (− 0.2% mean difference) followed by OMI/Aura (+ 1.2% mean difference). Thus, they outperform the sensor with the highest spatial resolution of current satellite measurements, namely TROPOMI/S5P (+ 3.7% mean difference). This overprediction is similar to the one encountered for GOME-2/MetOp-B (+ 3.2% mean difference). A positive bias with respect to soundings was also identified in TrCO measured by TROPOMI/S5P (+ 32.5% mean difference). It was found that the climatology used by TROPOMI overpredicts ozone in the troposphere when compared with the mean of Andes measurements, while both data sets are essentially the same in the stratosphere. Regarding reanalysis products, MERRA-2 compares better to ozonesondes than CAMS, both for TCO and TrCO (mean differences are 1.9% vs. 3.3%, and 11.5% vs. 22.9%, respectively). Identifying spaceborne ozone measurements that currently perform the best over the region is relevant given the present conditions of rapidly changing atmospheric composition. At the same time, ozonesonde data in this work offer an opportunity to improve satellite observations in the Andean tropics, a challenging region for space measurements.
AB - Satellite observations of ozone in the tropics have feedback from in situ measurements at sea level stations, but the tropical Andes is a region that is yet to be included in systematic validations. In this work, ozonesondes launched from the equatorial Andes were used to evaluate total column ozone (TCO) measured by spaceborne sensors TROPOMI/S5P (2018–2021), GOME-2/MetOp-B, OMI/Aura, and OMPS/Suomi NPP (2014–2021). Likewise, we evaluated tropospheric column ozone (TrCO) measured by the first two. Additionally, we evaluated TCO and TrCO from reanalysis products MERRA-2 and CAMS-EAC4. Results indicate that TCO observations by OMPS/Suomi NPP produce the closest comparison to ozonesondes (− 0.2% mean difference) followed by OMI/Aura (+ 1.2% mean difference). Thus, they outperform the sensor with the highest spatial resolution of current satellite measurements, namely TROPOMI/S5P (+ 3.7% mean difference). This overprediction is similar to the one encountered for GOME-2/MetOp-B (+ 3.2% mean difference). A positive bias with respect to soundings was also identified in TrCO measured by TROPOMI/S5P (+ 32.5% mean difference). It was found that the climatology used by TROPOMI overpredicts ozone in the troposphere when compared with the mean of Andes measurements, while both data sets are essentially the same in the stratosphere. Regarding reanalysis products, MERRA-2 compares better to ozonesondes than CAMS, both for TCO and TrCO (mean differences are 1.9% vs. 3.3%, and 11.5% vs. 22.9%, respectively). Identifying spaceborne ozone measurements that currently perform the best over the region is relevant given the present conditions of rapidly changing atmospheric composition. At the same time, ozonesonde data in this work offer an opportunity to improve satellite observations in the Andean tropics, a challenging region for space measurements.
UR - http://www.scopus.com/inward/record.url?scp=85138460671&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-20303-7
DO - 10.1038/s41598-022-20303-7
M3 - Artículo
C2 - 36153407
AN - SCOPUS:85138460671
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 15942
ER -