Analysis of the symmetry group and exact solutions of the dispersionless KP equation in n + 1 dimensions

J. M. Conde, F. Güngör

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

The Lie algebra of the symmetry group of the (n + 1)-dimensional generalization of the dispersionless Kadomtsev-Petviashvili equation is obtained and identified as a semi-direct sum of a finite dimensional simple Lie algebra and an infinite dimensional nilpotent subalgebra. Group transformation properties of solutions under the subalgebra sl(2,R) are presented. Known explicit analytic solutions in the literature are shown to be actually group-invariant solutions corresponding to certain specific infinitesimal generators of the symmetry group.

Idioma originalInglés
Número de artículo111501
PublicaciónJournal of Mathematical Physics
Volumen59
N.º11
DOI
EstadoPublicada - 1 nov. 2018

Huella

Profundice en los temas de investigación de 'Analysis of the symmetry group and exact solutions of the dispersionless KP equation in n + 1 dimensions'. En conjunto forman una huella única.

Citar esto