Analytical results for random line networks applications to fracture networks and disordered fiber composites

Adolfo A. Rodriguez, Ernesto Medina

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We study the geometrical properties of a continuum model consisting of an ensemble of intersecting lines placed within a finite region in two dimensions. We consider the model in the high-density regime where it emulates fiber composites, filtering elements and fracture networks. We report exact results for the probability distribution of segment lengths produced by line intersections. Segment loop perimeter and area distribution are estimated numerically. For the probability distribution of perimeters, we found the interesting phenomenon of small pore perimeter power law repulsion for pores of four or more sides. Two subsidiary models, with infinite line length, are solved exactly and reveal the salient features of the finite line model. Important applications to fiber selectivity and optimal intersection trajectories in fracture networks are discussed.

Idioma originalInglés
Páginas (desde-hasta)35-49
Número de páginas15
PublicaciónPhysica A: Statistical Mechanics and its Applications
Volumen282
N.º1
DOI
EstadoPublicada - 1 jul. 2000
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Analytical results for random line networks applications to fracture networks and disordered fiber composites'. En conjunto forman una huella única.

Citar esto