Antimagic Labelings of Join Graphs

Martin Bača, Oudone Phanalasy, Joe Ryan, Andrea Semaničová-Feňovčíková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers $${\{1, 2,\dots,q\}}$${1,2,⋯,q} such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph G + H of the graphs G and H is the graph with V(G+H)=V(G)∪V(H) and E(G+H)=E(G)∪E(H)∪{uv:u∈V(G)andv∈V(H)}. The complete bipartite graph Km,n is an example of join graphs and we give an antimagic labeling for Km,n,n ≥ 2m+1. In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.

Idioma originalInglés
Páginas (desde-hasta)139-143
Número de páginas5
PublicaciónMathematics in Computer Science
Volumen9
N.º2
DOI
EstadoPublicada - 15 jun. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Antimagic Labelings of Join Graphs'. En conjunto forman una huella única.

Citar esto