Approximate controllability of semilinear strongly damped wave equation with impulses, delays, and nonlocal conditions

Cosme Duque, Jahnett Uzcátegui, Hugo Leiva, Oscar Camacho

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

In this paper, we prove that the interior approximate controllability of the linear strongly damped wave equation is not destroyed if we add impulses, nonlocal conditions, and a nonlinear perturbation with delay in the state. Specifically, we prove the interior approximate controllability of the semilinear strongly damped wave equation with impulses, delays, and nonlocal conditions. This is done by applying Roth’s Fixed Point Theorem and the compactness of the semigroup generated by the linear uncontrolled system. Finally, we present some open problems and a possible general framework to study the controllability of impulsive semilinear second-order diffusion process in Hilbert spaces with delays and nonlocal conditions.

Idioma originalInglés
Páginas (desde-hasta)108-121
Número de páginas14
PublicaciónJournal of Mathematics and Computer Science
Volumen20
N.º2
DOI
EstadoPublicada - 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Approximate controllability of semilinear strongly damped wave equation with impulses, delays, and nonlocal conditions'. En conjunto forman una huella única.

Citar esto