Automatic identification of intestinal parasites in reptiles using microscopic stool images and convolutional neural networks

Carla Parra, Felipe Grijalva, Bryan Núñez, Alejandra Núñez, Noel Pérez, Diego Benítez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

Captive environments trigger the propagation and multiplication of parasites among different reptile species, thus weakening their immune response and causing infections and diseases. Technological advances of convolutional neural networks have opened a new field for detecting and classifying diseases which have shown great potential to overcome the shortcomings of manual detection performed by experts. Therefore, we propose an approach to identify six captive reptiles parasitic agents (Ophionyssus natricis, Blastocystis sp, Oxiurdo egg, Rhytidoides similis, Strongyloides, Taenia) or the absence of such parasites from a microscope stool images dataset. Towards this end, we first use an image segmentation stage to detect the parasite within the image, which combines the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique, the OTSU binarization method, and morphological operations. Then, we carry out a classification stage through MobileNet CNN under a transfer learning scheme. This method was validated on a stool image dataset containing 3616 images data samples and 26 videos from the six parasites mentioned above. The results obtained indicate that our transfer learning-based approach can learn a helpful representation from the dataset. We obtained an average accuracy of 94.26% across the seven classes (i.e., six parasitic agents and the absence of parasites), which statistically outperformed, at a 95% confidence level, a custom CNN trained from scratch.

Idioma originalInglés
Número de artículoe0271529
PublicaciónPLoS ONE
Volumen17
N.º8 August
DOI
EstadoPublicada - ago. 2022

Huella

Profundice en los temas de investigación de 'Automatic identification of intestinal parasites in reptiles using microscopic stool images and convolutional neural networks'. En conjunto forman una huella única.

Citar esto