Computational modeling in nanomedicine: Prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model

Alejandro Speck-Planche, Valeria V. Kleandrova, Feng Luan, Maria Natália Ds Cordeiro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

59 Citas (Scopus)

Resumen

Aims: We introduce the first quantitative structure-activity relationship (QSAR) perturbation model for probing multiple antibacterial profiles of nanoparticles (NPs) under diverse experimental conditions. Materials & methods: The dataset is based on 300 nanoparticles containing dissimilar chemical compositions, sizes, shapes and surface coatings. In general terms, the NPs were tested against different bacteria, by considering several measures of antibacterial activity and diverse assay times. The QSAR perturbation model was created from 69,231 nanoparticle-nanoparticle (NP-NP) pairs, which were randomly generated using a recently reported perturbation theory approach. Results: The model displayed an accuracy rate of approximately 98% for classifying NPs as active or inactive, and a new copper-silver nanoalloy was correctly predicted by this model with consensus accuracy of 77.73%. Conclusion: Our QSAR perturbation model can be used as an efficacious tool for the virtual screening of antibacterial nanomaterials.

Idioma originalInglés
Páginas (desde-hasta)193-204
Número de páginas12
PublicaciónNanomedicine
Volumen10
N.º2
DOI
EstadoPublicada - 1 ene. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Computational modeling in nanomedicine: Prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model'. En conjunto forman una huella única.

Citar esto