TY - JOUR
T1 - Consecutive-magic labeling of generalized Petersen graphs
AU - Bača, Martin
PY - 2000/11
Y1 - 2000/11
N2 - The generalized Petersen graph P(n, k) has vertex set V = { u1 , u2 , . . . , un , v1 , v2 , . . . , vn } and edge set E = { ui ui + 1 , ui vi , vi vi + k \ for 1 ≤ i ≤ n and 1 ≤ k ≤ [n-1/2], with indices taken modulo n}. We deal with the problem of labeling edges of the generalized Petersen graph P(n, k) and we show that P(n, k) is consecutive-magic iff n is even (n ≥ 4) and k ≤ n/2 - 1.
AB - The generalized Petersen graph P(n, k) has vertex set V = { u1 , u2 , . . . , un , v1 , v2 , . . . , vn } and edge set E = { ui ui + 1 , ui vi , vi vi + k \ for 1 ≤ i ≤ n and 1 ≤ k ≤ [n-1/2], with indices taken modulo n}. We deal with the problem of labeling edges of the generalized Petersen graph P(n, k) and we show that P(n, k) is consecutive-magic iff n is even (n ≥ 4) and k ≤ n/2 - 1.
UR - http://www.scopus.com/inward/record.url?scp=0034343892&partnerID=8YFLogxK
M3 - Artículo
AN - SCOPUS:0034343892
SN - 0315-3681
VL - 58
SP - 237
EP - 241
JO - Utilitas Mathematica
JF - Utilitas Mathematica
ER -