Control of a pH Neutralization Process using Neural Network Approaches

Diego Ortiz, Diego Valdiviezo, Danilo Chávez, Kleber Patiño, Pablo Proaño, Oscar Camacho

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This work presents an investigation into advanced control strategies for a nonlinear pH neutralization process. The study compares three control approaches: a traditional PID controller, a PID controller combined with a neural network (PID + NN), and a neural network-based PID controller with adaptive adjustment. A first-order plus dead-time (FOPDT) model is employed for parameter tuning, and simulations are conducted using Matlab to evaluate the performance of each method. Metrics such as overshoot, settling time, and Integral Squared Error (ISE) are analyzed. The results demonstrate that both the PID + NN and the adaptive neural network PID controller outperform the classic PID controller in terms of overshoot, settling time, and disturbance handling. In addition, details the process of training neural networks for parameter adjustment and response to changes, utilizing NARX networks and time-series training.

Idioma originalInglés
Título de la publicación alojada2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350365931
DOI
EstadoPublicada - 2024
Evento7th IEEE Biennial Congress of Argentina, ARGENCON 2024 - San Nicolas de los Arroyos, Argentina
Duración: 18 sep. 202420 sep. 2024

Serie de la publicación

Nombre2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024

Conferencia

Conferencia7th IEEE Biennial Congress of Argentina, ARGENCON 2024
País/TerritorioArgentina
CiudadSan Nicolas de los Arroyos
Período18/09/2420/09/24

Huella

Profundice en los temas de investigación de 'Control of a pH Neutralization Process using Neural Network Approaches'. En conjunto forman una huella única.

Citar esto