COVID-19 Diagnosis on Chest X-Ray Images using an Xception-based Deep Learning Classifier and Gradient-weighted Class Activation Mapping

Diego Maldonado, Ricardo Araguillin, Felipe Grijalva, Diego S. Benitez, Noel Perez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper proposes the development of a deep learning model for diagnosing COVID-19 through the analysis of chest X-ray images. First, data augmentation is implemented to avoid overfitting and improve model generalization. Then, instead of conventional image segmentation techniques, Gradient-weighted Class Activation Mapping (Grad-CAM) is used to highlight the important regions directly related to COVID-19. Subsequently, transfer learning is implemented to transform the data of the X-ray images to a reduced set of features using the Xception convolutional neural network. Finally, a classification neural network is designed, parameterized and trained, which is capable of recognizing healthy patients with 97% accuracy, while the detection rate for patients infected with COVID-19 was 92%.

Idioma originalInglés
Título de la publicación alojada2023 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023 - Proceedings
EditoresAlvaro David Orjuela-Canon
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350316599
DOI
EstadoPublicada - 26 jul. 2023
Evento2023 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023 - Bogota, Colombia
Duración: 26 jul. 202328 jul. 2023

Serie de la publicación

Nombre2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)

Conferencia

Conferencia2023 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023
País/TerritorioColombia
CiudadBogota
Período26/07/2328/07/23

Huella

Profundice en los temas de investigación de 'COVID-19 Diagnosis on Chest X-Ray Images using an Xception-based Deep Learning Classifier and Gradient-weighted Class Activation Mapping'. En conjunto forman una huella única.

Citar esto