TY - CHAP
T1 - Decellularization and Recellularization Methods for Avian Lungs
T2 - An Alternative Approach for Use in Pulmonary Therapeutics
AU - Tanneberger, Alicia E.
AU - Weiss, Daniel J.
AU - Uriarte, Juan J.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022
Y1 - 2022
N2 - The shortage of compatible allogeneic organs and an increase in the number of patients requiring long-term lung assist devices while waiting for lung transplantation have motivated scientists to explore alternatives to bioengineer new lungs, including through decellularization and recellularization processes. A novel approach for bioengineering an extracorporeal membrane oxygenator is based on the parenchymal structure of avian lungs which utilizes a cross-current unidirectional flow of air and blood rather than bidirectional airflow, and thus eliminates dead-space ventilation. This provides more efficient gas exchange than mammalian lungs. The novel approach utilized is to decellularize avian lungs and then to recellularize with patient-derived human lung epithelial and vascular endothelial cells with the goal of creating a fully functional structure that can be used as a gas-exchange device. Here, we present avian lung decellularization and recellularization methods for chicken and emu lungs, in order to study both small- and large-scale avian lung models. For decellularization, a detergent-based protocol is utilized, and different techniques are used to validate the de- and recellularization of those lungs, including microscopy, mass spectrometry, and immunohistochemical analyses. For recellularization, techniques for seeding different human lung cell types into the decellularized scaffolds are presented.
AB - The shortage of compatible allogeneic organs and an increase in the number of patients requiring long-term lung assist devices while waiting for lung transplantation have motivated scientists to explore alternatives to bioengineer new lungs, including through decellularization and recellularization processes. A novel approach for bioengineering an extracorporeal membrane oxygenator is based on the parenchymal structure of avian lungs which utilizes a cross-current unidirectional flow of air and blood rather than bidirectional airflow, and thus eliminates dead-space ventilation. This provides more efficient gas exchange than mammalian lungs. The novel approach utilized is to decellularize avian lungs and then to recellularize with patient-derived human lung epithelial and vascular endothelial cells with the goal of creating a fully functional structure that can be used as a gas-exchange device. Here, we present avian lung decellularization and recellularization methods for chicken and emu lungs, in order to study both small- and large-scale avian lung models. For decellularization, a detergent-based protocol is utilized, and different techniques are used to validate the de- and recellularization of those lungs, including microscopy, mass spectrometry, and immunohistochemical analyses. For recellularization, techniques for seeding different human lung cell types into the decellularized scaffolds are presented.
KW - Avian lungs
KW - Bioengineered lung device
KW - Decellularization
KW - Extracorporeal membrane oxygenator
KW - Recellularization
UR - http://www.scopus.com/inward/record.url?scp=85123882828&partnerID=8YFLogxK
U2 - 10.1007/978-1-0716-1811-0_33
DO - 10.1007/978-1-0716-1811-0_33
M3 - Capítulo
C2 - 35094350
AN - SCOPUS:85123882828
T3 - Methods in Molecular Biology
SP - 617
EP - 649
BT - Methods in Molecular Biology
PB - Humana Press Inc.
ER -