DeepSIT: Deeply Supervised Framework for Image Translation on Breast Cancer Analysis

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Image translation networks are deep learning models that can convert an image from one domain to another while preserving the semantic content. These networks are helpful in the medical field for noise reduction, reconstruction, and modality conversion. In this work, we propose DeepSIT, a deeply supervised framework for image translation. DeepSIT is a conditional generative adversarial network composed of a deeply supervised U-Net generator network and four PatchGAN discriminator networks. The generator performs the translation task while the discriminators judge the quality of the generated images. Unlike other works, the generator has four output layers located in the final and intermediate layers of the network. Each output layer generates a synthetic image, which is evaluated using a pixel-wise L1 loss function. Furthermore, the four discriminator networks receive a predicted image from an output layer to judge the quality of the translation at different scales. A promising application of image translation is the generation of immunohistochemical (IHC) images from Hematoxylin and Eosin (HE) images for breast cancer diagnosis. The proposed framework is evaluated in the latter tasks using the BCI Image Generation Grand Challenge dataset. DeepSIT achieves first place in the post-challenge leaderboard with an average of 0.545 SSIM and 18.037 PSNR in the test set.

Idioma originalInglés
Título de la publicación alojada2023 IEEE 13th International Conference on Pattern Recognition Systems, ICPRS 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350333374
DOI
EstadoPublicada - 4 jul. 2023
Evento13th IEEE International Conference on Pattern Recognition Systems, ICPRS 2023 - Guayaquil, Ecuador
Duración: 4 jul. 20237 jul. 2023

Serie de la publicación

Nombre2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS)

Conferencia

Conferencia13th IEEE International Conference on Pattern Recognition Systems, ICPRS 2023
País/TerritorioEcuador
CiudadGuayaquil
Período4/07/237/07/23

Huella

Profundice en los temas de investigación de 'DeepSIT: Deeply Supervised Framework for Image Translation on Breast Cancer Analysis'. En conjunto forman una huella única.

Citar esto