DGLC: A density-based global logical combinatorial clustering algorithm for Large Mixed Incomplete Data

Jose Ruiz-Shulcloper, Eduardo Alba-Cabrera, Guillermo Sanchez-Diaz

Producción científica: Contribución a una conferenciaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Clustering has been widely used in areas as Pattern Recognition, Data Analysis and Image Processing. Recently, clustering algorithms have been recognized as one of a powerful tool for Data Mining. However, the well-known clustering algorithms offer no solution to the case of Large Mixed Incomplete Data Sets. In this paper we comment the possibilities of application of the methods, techniques and philosophy of the Logical Combinatorial approach for clustering in these kinds of data sets. We present the new clustering algorithm DGLC for discovering β0-density connected components from large mixed incomplete data sets. This algorithm combines the ideas of Logical Combinatorial Pattern Recognition with the Density Based Notion of Cluster. Finally, an example is showed in order to illustrate the work of the algorithm.

Idioma originalInglés
Páginas2846-2848
Número de páginas3
EstadoPublicada - 2000
Publicado de forma externa
Evento2000 International Geoscience and Remote Sensing Symposium (IGARSS 2000) - Honolulu, HI, USA
Duración: 24 jul. 200028 jul. 2000

Conferencia

Conferencia2000 International Geoscience and Remote Sensing Symposium (IGARSS 2000)
CiudadHonolulu, HI, USA
Período24/07/0028/07/00

Huella

Profundice en los temas de investigación de 'DGLC: A density-based global logical combinatorial clustering algorithm for Large Mixed Incomplete Data'. En conjunto forman una huella única.

Citar esto