Dunn's index for cluster tendency assessment of pharmacological data sets

Oscar Miguel Rivera-Borroto, Mónica Rabassa-Gutiérrez, Ricardo del Corazón Grau-Ábalo, Yovani Marrero-Ponce, José Manuel García de la Vega

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

Cluster tendency assessment is an important stage in cluster analysis. In this sense, a group of promising techniques named visual assessment of tendency (VAT) has emerged in the literature. The presence of clusters can be detected easily through the direct observation of a dark blocks structure along the main diagonal of the intensity image. Alternatively, if the Dunn's index for a single linkage partition is greater than 1, then it is a good indication of the blocklike structure. In this report, the Dunn's index is applied as a novel measure of tendency on 8 pharmacological data sets, represented by machine- learning-selected molecular descriptors. In all cases, observed values are less than 1, thus indicating a weak tendency for data to form compact clusters. Other results suggest that there is an increasing relationship between the Dunn's index as a measure of cluster separability and the classification accuracy of various cluster algorithms tested on the same data sets.

Idioma originalInglés
Páginas (desde-hasta)425-433
Número de páginas9
PublicaciónCanadian Journal of Physiology and Pharmacology
Volumen90
N.º4
DOI
EstadoPublicada - abr. 2012
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Dunn's index for cluster tendency assessment of pharmacological data sets'. En conjunto forman una huella única.

Citar esto