Edge-antimagic labelings of forests

Martin Bača, Yuqing Lin, Francesc A. Muntaner-Batle

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

An (a, d)-edge-antimagic total labeling of a graph G(V, E) is a one-to-one map f from V(G) U E(G) onto the integers {1,2,..., [V(G)| + |E(G)|} such that the edge-weights w(uv) = f(u) + f(uv) + f(v), uv € E(G), form an arithmetic progression with initial term a and common difference d. Such a labeling is called super if it has the property that the vertex labels are the smallest possible. In this paper we examine the existence of super (a, d)-edge-antimagic total labelings of forests, in which every component is a pathlike tree. Indeed, we prove that such a labeling exists when the forest has an odd number of components.

Idioma originalInglés
Páginas (desde-hasta)31-40
Número de páginas10
PublicaciónUtilitas Mathematica
Volumen81
EstadoPublicada - mar. 2010
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Edge-antimagic labelings of forests'. En conjunto forman una huella única.

Citar esto