Enhancing Traffic Prediction with Interpretable Community Embeddings via Louvain Algorithm

Bartosz Durys, Israel Pineda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Predicting traffic is a complex problem that involves both space and time. This study focuses on the spatial aspect of this challenge, specifically how groups of road sections behave and interact within a city. Leveraging the well-regarded Louvain algorithm, we partition the urban road network into distinct communities. To augment the predictive power of models, we implement a learnable embedding layer that integrates generated groups with the input. We test our idea with a classic and simple model called Temporal Graph Convolutional Network (T-GCN). The obtained results highlight the promise of this avenue of research and emphasize its value for further investigation. Notably, the interpretability of the generated embeddings is demonstrated. By extracting meaningful relationships and disparities among communities, we provide insights into the dynamics of the road network. This approach enhances traffic prediction and contributes to a deeper understanding of the spatial interactions within urban road systems.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2023 12th International Conference on Computer Technologies and Development, TechDev 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas11-15
Número de páginas5
ISBN (versión digital)9798350381269
DOI
EstadoPublicada - 2023
Evento12th International Conference on Computer Technologies and Development, TechDev 2023 - Virtual, Online, Italia
Duración: 14 oct. 202316 oct. 2023

Serie de la publicación

NombreProceedings - 2023 12th International Conference on Computer Technologies and Development, TechDev 2023

Conferencia

Conferencia12th International Conference on Computer Technologies and Development, TechDev 2023
País/TerritorioItalia
CiudadVirtual, Online
Período14/10/2316/10/23

Huella

Profundice en los temas de investigación de 'Enhancing Traffic Prediction with Interpretable Community Embeddings via Louvain Algorithm'. En conjunto forman una huella única.

Citar esto