Ensemble of LinkNet Networks for Head and Neck Tumor Segmentation

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The segmentation of head and neck cancer (HNC) tumors is a critical step in radiotherapy treatment planning. The development of automatic segmentation algorithms has the potential to streamline the radiation oncology process. In this work, we develop an ensemble of LinkNet networks for HNC tumor segmentation as part of the HNTS-MRG 2024 Grand Challenge. A single LinkNet network, pretrained on the Imagenet dataset, was trained for 200 epochs on the HNC dataset provided by the challenge. Eight good performing weights from the internal validation set were selected to create an ensemble of 2D networks. Specifically, each selected weight was used to generate a LinkNet architecture, resulting in eight networks whose predictions were averaged to produce the final predicted segmentation. Our experiments demonstrate that the ensemble network performs better than each individual architecture, leveraging the benefits of ensemble learning without the computational cost of training each network from scratch. In the challenge’s test set, the LinkNet Ensemble (team ECU) achieved an aggregated Dice score of 64.60% and 49.53% for metastatic lymph nodes and primary gross tumor segmentation, respectively, and a mean score of 57.06%.

Idioma originalInglés
Título de la publicación alojadaHead and NeckTumor Segmentation for MR-Guided Applications - 1st MICCAI Challenge, HNTS-MRG2024 Held in Conjunction with MICCAI 2024
EditoresKareem A. Wahid, Mohamed A. Naser, Cem Dede, Clifton D. Fuller
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas214-221
Número de páginas8
ISBN (versión impresa)9783031832734
DOI
EstadoPublicada - 2025
Evento1st Challenge on Head and Neck Tumor Segmentation for MRI-Guided Applications, HNTS-MRG 2024, Held in Conjunction with 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Marruecos
Duración: 17 oct. 202417 oct. 2024

Serie de la publicación

NombreLecture Notes in Computer Science
Volumen15273 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia1st Challenge on Head and Neck Tumor Segmentation for MRI-Guided Applications, HNTS-MRG 2024, Held in Conjunction with 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
País/TerritorioMarruecos
CiudadMarrakesh
Período17/10/2417/10/24

Huella

Profundice en los temas de investigación de 'Ensemble of LinkNet Networks for Head and Neck Tumor Segmentation'. En conjunto forman una huella única.

Citar esto