ESeismic-GAN: A Generative Model for Seismic Events from Cotopaxi Volcano

Felipe Grijalva, Washington Ramos, Noel Perez, Diego Benitez, Roman Lara, Mario Ruiz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

16 Citas (Scopus)

Resumen

With the growing ability to collect large volumes of volcano seismic data, the detection and labeling process of these records is increasingly challenging. Clearly, analyzing all available data through manual inspection is no longer a viable option. Supervised machine learning models might be considered to automatize the analysis of data acquired by in situ monitoring stations. However, the direct application of such algorithms is defiant, given the high complexity of waveforms and the scarce and often imbalanced amount of labeled data. In light of this and motivated by the wide success that generative adversarial networks (GANs) have seen at generating images, we present ESeismic-GAN, a GAN model to generate the magnitude frequency response of volcanic events. Our experiments demonstrate that ESeismic-GAN learns to generate the frequency components that characterize long-period and volcano-tectonic events from Cotopaxi volcano. We evaluate the performance of ESeismic-GAN during the training stage using Fréchet distance, and, later on, we reconstruct the signals into time-domain to be finally evaluated with Frechet inception distance.

Idioma originalInglés
Número de artículo9477001
Páginas (desde-hasta)7111-7120
Número de páginas10
PublicaciónIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volumen14
DOI
EstadoPublicada - 2021

Huella

Profundice en los temas de investigación de 'ESeismic-GAN: A Generative Model for Seismic Events from Cotopaxi Volcano'. En conjunto forman una huella única.

Citar esto