Face Gesture Recognition Using Deep-Learning Models

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

This work compares face gesture recognition methods based on deep learning convolutional neural network (DCNN) architectures named DCNN1, DCNN2, DCNN3, DCNN4, and DCNN+Autoencoder, that maximize the classification performance on single and mixing datasets. We validated the proposed architectures on three different databases: Jaffe, CK+, and the combination of both databases (Jaffe CK+) over a five-fold cross-validation strategy. The DCNN4, DCNN2, and DCNN+Autoencoder models achieved best performance mean accuracy scores of 95%, 94%, and 96% for the Jaffe, CK+, and Jaffe CK+ databases, respectively. Moreover, according to the cross-entropy loss function, the selected models did not incur overfitting.

Idioma originalInglés
Título de la publicación alojada2021 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2021 - Proceedings
EditoresAlvaro David Orjuela-Canon
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665435345
DOI
EstadoPublicada - 26 may. 2021
Evento2021 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2021 - Virtual, Online, Colombia
Duración: 26 may. 202128 may. 2021

Serie de la publicación

Nombre2021 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2021 - Proceedings

Conferencia

Conferencia2021 IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2021
País/TerritorioColombia
CiudadVirtual, Online
Período26/05/2128/05/21

Huella

Profundice en los temas de investigación de 'Face Gesture Recognition Using Deep-Learning Models'. En conjunto forman una huella única.

Citar esto