Fans are cycle-antimagic

Ali Ovais, Muhammad Awais Umar, Martin Bača, Andrea Semaničová-Feňovčíková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

A simple graph G = (V, E) admits an H-covering if every edge in E belongs at least to one subgraph of G isomorphic to a given graph H. Then the graph G admitting an H-covering is (a, d)-H-antimagic if there exists a bijection f : V ∪ E → {1, 2, …, |V | + |E|} such that, for all∑ subgraphs H of G isomorphic to H, the H -weights, wtf (H) =v∈V(H) f(v) +∑e∈E(H ′) f(e), form an arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. This paper is devoted to studying the existence of super (a, d)-H-antimagic labelings for fans when subgraphs H are cycles.

Idioma originalInglés
Páginas (desde-hasta)94-105
Número de páginas12
PublicaciónAustralasian Journal of Combinatorics
Volumen68
N.º1
EstadoPublicada - 2017
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Fans are cycle-antimagic'. En conjunto forman una huella única.

Citar esto