Finite element analysis of heat flow in single-pass arc welds

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

71 Citas (Scopus)


The easiest ways to simulate welding processes are with the decoupled heat equation of Navier-Stokes or magnetohydrodynamic (MHD) equations. To decouple the heat equation, functions of energy input rate Q, heat flux per unit area (or volume) per unit time q and effective thermal conductivity Keff that generate a temperature field by the heat equation must be considered. More precisely, the traditional heat source models (Gaussian and ellipsoidal) and Keff functions must be used cautiously because of the critical responsibility to represent the magnetohydrodynamics of the arc and the fluid mechanics of the weld pool. When thermal efficiency is introduced in the decoupled heat equation, both the complex and nonintuitive physics of the arc and dilution (through melting efficiency) are incorporated in the heat transfer analysis. This paper allows the melting efficiency to be related to the process variables in a finite element model (FEM) simulation through the energy input rate Q. Transient thermal histories and sizes of fusion and heat-affected zones are compared with numerical and measured values reported by Christensen, Krutz and Goldak using both Gaussian and ellipsoidal power density distribution functions. The FEM code COSMOS, produced by Structural Research and Analysis Corp., was used for all the simulations described in the following sections.

Idioma originalInglés
Páginas (desde-hasta)121-s
PublicaciónWelding Journal (Miami, Fla)
EstadoPublicada - may. 2000
Publicado de forma externa


Profundice en los temas de investigación de 'Finite element analysis of heat flow in single-pass arc welds'. En conjunto forman una huella única.

Citar esto