Forecasting annual geophysical time series

Donald J. Noakes, Keith W. Hipel, A. Ian McLeod, Carlos Jimenez, Sidney Yakowitz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

23 Citas (Scopus)

Resumen

An important test of the adequecy of a stochastic model is its ability to forecast accurately. In hydrology as in many other disciplines, the performance of the model in producing one step ahead forecasts is of particular interest. The ability of several stationary nonseasonal time series models to produce accurate forecasts is examined in this paper. Statistical tests are employed to determine if the forecasts generated by a particular model are better than the forecasts produced by an alternative procedure. The results of the study indicate that for the data sets examined, there is no significant difference in forecast performance between the nonseasonal autoregressive moving average model and a nonparametric regression model.

Idioma originalInglés
Páginas (desde-hasta)103-115
Número de páginas13
PublicaciónInternational Journal of Forecasting
Volumen4
N.º1
DOI
EstadoPublicada - 1988
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Forecasting annual geophysical time series'. En conjunto forman una huella única.

Citar esto