Foundation Models for Medical Image Segmentation: A Literature Review

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Medical image segmentation is an important component of medical image analysis, allowing precise delineation of regions of interest for accurate diagnosis and treatment planning. Deep learning models have traditionally dominated this field; however, their reliance on large task-specific datasets and limited generalization capabilities present significant challenges. The emergence of foundation models (FMs), particularly the Segment Anything Model (SAM), has introduced a new paradigm by enabling vision FMs to perform diverse segmentation tasks without the need for re-training. This study presents a system-atic literature review of FMs for medical image segmentation, synthesizing 27 papers published between 2023 and 2024. The review examines three key aspects: the development of novel FMs designed for medical image segmentation, adaptations of SAM for medical imaging applications, and primary challenges asso-ciated with implementing FMs in this domain. By consolidating recent advances and limitations, this study provides an updated perspective on the role of FMs in medical-image segmentation.

Idioma originalInglés
Título de la publicación alojadaISDFS 2025 - 13th International Symposium on Digital Forensics and Security
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798331509934
DOI
EstadoPublicada - 2025
Evento13th International Symposium on Digital Forensics and Security, ISDFS 2025 - Boston, Estados Unidos
Duración: 24 abr. 202525 abr. 2025

Serie de la publicación

NombreISDFS 2025 - 13th International Symposium on Digital Forensics and Security

Conferencia

Conferencia13th International Symposium on Digital Forensics and Security, ISDFS 2025
País/TerritorioEstados Unidos
CiudadBoston
Período24/04/2525/04/25

Huella

Profundice en los temas de investigación de 'Foundation Models for Medical Image Segmentation: A Literature Review'. En conjunto forman una huella única.

Citar esto