TY - JOUR
T1 - Fractional Multicomplex Polynomials
AU - Ceballos, Johan
AU - Coloma, Nicolás
AU - Di Teodoro, Antonio
AU - Ochoa-Tocachi, Diego
AU - Ponce, Francisco
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
PY - 2022/6
Y1 - 2022/6
N2 - In this paper we will investigate fractional analytic properties of multi-complex valued polynomials defined on BCn (the space of multicomplex numbers refers to the space generated over the reals by n commuting imaginary units) using a modification of the Cauchy–Riemann operator that substitutes the classical partial derivative for a fractional derivative.
AB - In this paper we will investigate fractional analytic properties of multi-complex valued polynomials defined on BCn (the space of multicomplex numbers refers to the space generated over the reals by n commuting imaginary units) using a modification of the Cauchy–Riemann operator that substitutes the classical partial derivative for a fractional derivative.
KW - Fractional Cauchy–Riemann operator
KW - Fractional analytic functions
KW - Fractional bicomplex functions
KW - Multicomplex numbers
KW - Multicomplex valued polynomials
UR - http://www.scopus.com/inward/record.url?scp=85132627271&partnerID=8YFLogxK
U2 - 10.1007/s11785-022-01237-4
DO - 10.1007/s11785-022-01237-4
M3 - Artículo
AN - SCOPUS:85132627271
SN - 1661-8254
VL - 16
JO - Complex Analysis and Operator Theory
JF - Complex Analysis and Operator Theory
IS - 4
M1 - 60
ER -