Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense

A. Di Teodoro, M. Ferreira, N. Vieira

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace Δa+α and Dirac Da+α operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.

Idioma originalInglés
Número de artículo3
PublicaciónAdvances in Applied Clifford Algebras
Volumen30
N.º1
DOI
EstadoPublicada - feb. 2019

Huella

Profundice en los temas de investigación de 'Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense'. En conjunto forman una huella única.

Citar esto