Further results on antimagic graph labelings

M. Bača, M. Z. Youssef

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)


For a graph G = (V, E) with p vertices and q edges, a bijection f from V(G) ∪ E(G) onto {1, 2,...,-p + q] is called an (a, d)-edge-antimagic total labeling of G if the edge-weights {w(uv): w(uv) = f(u) + f(v) + f(uv),uv G E(G)}, form an arithmetic progression starting from a and having common difference d. We study graphs with no edge-antimagic labeling and show how to construct labelings for cycles with d = 3. We also show the relationship between the sequential graphs and the graphs having an (a, d)-edge-antimagic vertex labeling.

Idioma originalInglés
Páginas (desde-hasta)163-172
Número de páginas10
PublicaciónAustralasian Journal of Combinatorics
EstadoPublicada - 2007
Publicado de forma externa


Profundice en los temas de investigación de 'Further results on antimagic graph labelings'. En conjunto forman una huella única.

Citar esto