Fuzzy Kalman Filter using Linear Matrix Inequalities

Hanna Aboukheir, Marco Herrera, Edinzo Iglesias, Oscar Camacho

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The Kalman filter has been extensively used in different applications due to its strengths in estimating the system states under noisy observations. In this paper, a modification of the classical Kalman filter for nonlinear state estimation is presented; firstly, a polytopic set of linear discrete-time models based on a Takagi-Sugeno inference system is used to describe the nonlinear operating region. The stabilizing gains of the linear filters are calculated using Linear Matrix Inequalities (LMI), the proposal is evaluated through simulations.

Idioma originalInglés
Título de la publicación alojada2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665408738
DOI
EstadoPublicada - 2021
Evento2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021 - Virtual, Online, Chile
Duración: 6 dic. 20219 dic. 2021

Serie de la publicación

Nombre2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021

Conferencia

Conferencia2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
País/TerritorioChile
CiudadVirtual, Online
Período6/12/219/12/21

Huella

Profundice en los temas de investigación de 'Fuzzy Kalman Filter using Linear Matrix Inequalities'. En conjunto forman una huella única.

Citar esto