TY - JOUR
T1 - Generalized monogenic functions satisfying differential equations with anti-monogenic right-hand sides on Clifford algebras depending on parameters
AU - Di Teodoro, Antonio
PY - 2013/12
Y1 - 2013/12
N2 - The equation Du = F(x, u) in Clifford algebras depending on parameters is considered, where D is the Cauchy-Riemann operator. A sufficient condition for the right-hand side of the equation to be anti-monogenic is given. The given criterion enables the construction of anti-monogenic functions in Clifford algebras depending on parameters and yields interior L p-estimates as well. The results provide generalizations of those in Tutschke and Yüksel (1999) [W. Tutschke and U. Yüksel, Generalized Monogenic Functions Satisfying Differential Equations with Anti-Monogenic Right-Hand Sides, ISAAC Series, Vol. 6, Kluwer Academic Publishers, Dordrecht, 1999, pp. 263-270].
AB - The equation Du = F(x, u) in Clifford algebras depending on parameters is considered, where D is the Cauchy-Riemann operator. A sufficient condition for the right-hand side of the equation to be anti-monogenic is given. The given criterion enables the construction of anti-monogenic functions in Clifford algebras depending on parameters and yields interior L p-estimates as well. The results provide generalizations of those in Tutschke and Yüksel (1999) [W. Tutschke and U. Yüksel, Generalized Monogenic Functions Satisfying Differential Equations with Anti-Monogenic Right-Hand Sides, ISAAC Series, Vol. 6, Kluwer Academic Publishers, Dordrecht, 1999, pp. 263-270].
KW - Clifford algebras depending on parameters
KW - anti-monogenic functions
KW - generalized monogenic functions
KW - interior L estimates
KW - transition matrix
UR - http://www.scopus.com/inward/record.url?scp=84886446183&partnerID=8YFLogxK
U2 - 10.1080/17476933.2012.710845
DO - 10.1080/17476933.2012.710845
M3 - Artículo
AN - SCOPUS:84886446183
SN - 1747-6933
VL - 58
SP - 1715
EP - 1724
JO - Complex Variables and Elliptic Equations
JF - Complex Variables and Elliptic Equations
IS - 12
ER -