Hammerhead Shark Species Monitoring with Deep Learning

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)


In this paper, we propose a new automated method based on deep convolutional neural networks to detect and track critically endangered hammerhead sharks in video sequences. The proposed method improved the standard YOLOv3 deep architecture by adding 18 more layers (16 convolutional and 2 Yolo layers), which increased the model performance in detecting the species under analysis at different scales. According to the frame analysis based validation, the proposed method outperformed the standard YOLOv3 model and was similar to the mask R-CNN model in terms of accuracy scores for the majority of inspected frames. Also, the mean of precision and recall on an experimental frames dataset formed using the 10-fold cross-validation method highlighted that the proposed method outperformed the remaining architectures, reaching scores of 0.99 and 0.93, respectively. Furthermore, the methods were able to avoid introducing false positive detection. However, they were unable to handle the problem of species occlusion. Our results indicate that the proposed method is a feasible alternative tool that could help to monitor relative abundance of hammerhead sharks in the wild.

Idioma originalInglés
Título de la publicación alojadaApplications of Computational Intelligence - 3rd IEEE Colombian Conference, ColCACI 2020, Revised Selected Papers
EditoresAlvaro David Orjuela-Cañón, Jesus Lopez, Julián David Arias-Londoño, Juan Carlos Figueroa-García
EditorialSpringer Science and Business Media Deutschland GmbH
Número de páginas15
ISBN (versión impresa)9783030697730
EstadoPublicada - 2021
Evento3rd IEEE Colombian Conference on Applications of Computational Intelligence, IEEE ColCACI 2020 - Virtual, Online
Duración: 7 ago. 20208 ago. 2020

Serie de la publicación

NombreCommunications in Computer and Information Science
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937


Conferencia3rd IEEE Colombian Conference on Applications of Computational Intelligence, IEEE ColCACI 2020
CiudadVirtual, Online


Profundice en los temas de investigación de 'Hammerhead Shark Species Monitoring with Deep Learning'. En conjunto forman una huella única.

Citar esto