TY - JOUR
T1 - Hormone-mediated foraging strategies in an uncertain environment
T2 - Insights into the at-sea behavior of a marine predator
AU - DeRango, Eugene J.
AU - Schwarz, Jonas F.L.
AU - Piedrahita, Paolo
AU - Páez-Rosas, Diego
AU - Crocker, Daniel E.
AU - Krüger, Oliver
N1 - Publisher Copyright:
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
PY - 2021/6
Y1 - 2021/6
N2 - Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context. Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches. To address this, we measured between- and within-individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., “benthic,” “pelagic,” and “night” divers) within diverse habitat types. Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns. Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone-mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation. Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.
AB - Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context. Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches. To address this, we measured between- and within-individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., “benthic,” “pelagic,” and “night” divers) within diverse habitat types. Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns. Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone-mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation. Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.
KW - Galapagos sea lion
KW - cortisol
KW - diving behavior
KW - repeatability
KW - testosterone
KW - thyroid
UR - http://www.scopus.com/inward/record.url?scp=85104984968&partnerID=8YFLogxK
U2 - 10.1002/ece3.7590
DO - 10.1002/ece3.7590
M3 - Artículo
AN - SCOPUS:85104984968
SN - 2045-7758
VL - 11
SP - 7579
EP - 7590
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 12
ER -