Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection

Noel Perez, Miguel A. Guevara, Augusto Silva, Isabel Ramos, Joana Loureiro

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

25 Citas (Scopus)

Resumen

This paper proposed a comprehensive algorithm for building machine learning classifiers for Breast Cancer diagnosis based on the suitable combination of feature selection methods that provide high performance over the Area Under receiver operating characteristic Curve (AUC). The new developed method allows both for exploring and ranking search spaces of image-based features, and selecting subsets of optimal features for feeding Machine Learning Classifiers (MLCs). The method was evaluated using six mammography-based datasets (containing calcifications and masses lesions) with different configurations extracted from two public Breast Cancer databases. According to the Wilcoxon Statistical Test, the proposed method demonstrated to provide competitive Breast Cancer classification schemes reducing the number of employed features for each experimental dataset.

Idioma originalInglés
Título de la publicación alojada2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas209-217
Número de páginas9
ISBN (versión digital)9788360810583
DOI
EstadoPublicada - 21 oct. 2014
Publicado de forma externa
Evento2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014 - Warsaw, Polonia
Duración: 7 sep. 201410 sep. 2014

Serie de la publicación

Nombre2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014

Conferencia

Conferencia2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014
País/TerritorioPolonia
CiudadWarsaw
Período7/09/1410/09/14

Huella

Profundice en los temas de investigación de 'Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection'. En conjunto forman una huella única.

Citar esto