TY - JOUR
T1 - In silico screening of the drugbank database to search for possible drugs against sars-cov-2
AU - Cuesta, Sebastián A.
AU - Mora, José R.
AU - Márquez, Edgar A.
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/2/2
Y1 - 2021/2/2
N2 - Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC50 values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R2 = 0.897, Q2 LOO = 0.854, and Q2 ext = 0.876 and complying with all the parameters established in the validation Tropsha’s test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: Main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.
AB - Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC50 values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R2 = 0.897, Q2 LOO = 0.854, and Q2 ext = 0.876 and complying with all the parameters established in the validation Tropsha’s test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: Main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.
KW - Docking analysis
KW - DrugBank
KW - Molecular dynamics
KW - QSAR
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85102689240&partnerID=8YFLogxK
U2 - 10.3390/molecules26041100
DO - 10.3390/molecules26041100
M3 - Artículo
C2 - 33669720
AN - SCOPUS:85102689240
SN - 1420-3049
VL - 26
JO - Molecules
JF - Molecules
IS - 4
M1 - 1100
ER -