Interactive parameter tuning of bi-objective optimisation algorithms using the empirical attainment function

Manuel López-Ibáñez, Juan Esteban Diaz

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

We propose a visual approach of eliciting preferences from a Decision Maker (DM) in the context of comparing the stochastic outcomes of two alternative designs or parameter configurations of an optimization algorithm for bi-objective problems. Our proposal is based on visualizing the differences between the empirical attainment functions (EAFs) of the two alternative algorithmic configurations, and then ask the DM to choose their preferred side of the differences. Information about the regions preferred by the DM is translated into a weighted hypervolume indicator that will assign higher quality values to approximation fronts that result in EAF differences preferred by the DM. This indicator may be used to guide an automatic algorithm configuration method, such as irace, to search for parameter values that perform better in the objective space regions preferred by the DM. Experiments on the well-known bi-objective quadratic assignment problem and a real-world production planning problem arising in the manufacturing industry show the benefits of the proposal. This manuscript for the Hot-off-the-Press track at GECCO 2021 is based on the paper: "Incorporating Decision-Maker's Preferences into the Automatic Configuration of Bi-Objective Optimisation Algorithms"published by European Journal of Operational Research [6].

Idioma originalInglés
Título de la publicación alojadaGECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion
EditorialAssociation for Computing Machinery, Inc
Páginas37-38
Número de páginas2
ISBN (versión digital)9781450383516
DOI
EstadoPublicada - 7 jul. 2021
Evento2021 Genetic and Evolutionary Computation Conference, GECCO 2021 - Virtual, Online, Francia
Duración: 10 jul. 202114 jul. 2021

Serie de la publicación

NombreGECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion

Conferencia

Conferencia2021 Genetic and Evolutionary Computation Conference, GECCO 2021
País/TerritorioFrancia
CiudadVirtual, Online
Período10/07/2114/07/21

Huella

Profundice en los temas de investigación de 'Interactive parameter tuning of bi-objective optimisation algorithms using the empirical attainment function'. En conjunto forman una huella única.

Citar esto