Interior estimates in the sup-norm for a class of generalized functions with integral representations

Eusebio Ariza, Antonio Di Teodoro, Judith Vanegas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper we construct apriori estimates for the first order derivatives in the sup-norm for first order meta-monogenic functions, generalized monogenic functions satisfying a differential equation with an anti-monogenic right hand side and generalized meta-monogenic functions satisfying a differential equation with an anti-meta-monogenic right hand side. We obtain such estimates through integral representations of these classes of functions and give an explicit expression for the corresponding constants appearing in the estimates. Then we show how initial value problems can be solved in case an interior estimate is true in the function spaces under consideration. All related functions are in a Clifford type algebra.

Idioma originalInglés
Páginas (desde-hasta)27-51
Número de páginas25
PublicaciónBulletin of Computational Applied Mathematics
Volumen7
N.º1
EstadoPublicada - 2019

Huella

Profundice en los temas de investigación de 'Interior estimates in the sup-norm for a class of generalized functions with integral representations'. En conjunto forman una huella única.

Citar esto