TY - JOUR
T1 - Joint experimental and DFT study of the gas-phase unimolecular elimination kinetic of methyl trifluoropyruvate
AU - Tosta, María M.
AU - Mora, José R.
AU - Córdova, Tania
AU - Chuchani, Gabriel
PY - 2010/8/5
Y1 - 2010/8/5
N2 - The elimination kinetics of methyl trifluoropyruvate in the gas phase was determined in a static system, where the reaction vessel was always deactivated with allyl bromide, and in the presence of at least a 3-fold excess of the free-radical chain inhibitor toluene. The working temperature range was 388.5-430.1 °C, and the pressure range was 38.6-65.8 Torr. The reaction was found to be homogeneous and unimolecular and to obey a first-order rate law. The products of the reaction are methyl trifluoroacetate and CO gas. The Arrhenius equation of this elimination was found to be as follows: log k1 (s-1) = (12.48 ± 0.32) - (204.2 ± 4.2) kJ mol -1(2.303RT)-1 (r = 0.9994). The theoretical calculation of the kinetic and thermodynamic parameters and the mechanism of this reaction were carried out at the B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBEPBE/6-31G(d,p), and PBEPBE/6-31G++(d,p) levels of theory. The theoretical study showed that the preferred reaction channel is a 1,2-migration of OCH3 involving a three-membered cyclic transition state in the rate-determining step.
AB - The elimination kinetics of methyl trifluoropyruvate in the gas phase was determined in a static system, where the reaction vessel was always deactivated with allyl bromide, and in the presence of at least a 3-fold excess of the free-radical chain inhibitor toluene. The working temperature range was 388.5-430.1 °C, and the pressure range was 38.6-65.8 Torr. The reaction was found to be homogeneous and unimolecular and to obey a first-order rate law. The products of the reaction are methyl trifluoroacetate and CO gas. The Arrhenius equation of this elimination was found to be as follows: log k1 (s-1) = (12.48 ± 0.32) - (204.2 ± 4.2) kJ mol -1(2.303RT)-1 (r = 0.9994). The theoretical calculation of the kinetic and thermodynamic parameters and the mechanism of this reaction were carried out at the B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBEPBE/6-31G(d,p), and PBEPBE/6-31G++(d,p) levels of theory. The theoretical study showed that the preferred reaction channel is a 1,2-migration of OCH3 involving a three-membered cyclic transition state in the rate-determining step.
UR - http://www.scopus.com/inward/record.url?scp=77955115364&partnerID=8YFLogxK
U2 - 10.1021/jp104238a
DO - 10.1021/jp104238a
M3 - Artículo
C2 - 20617806
AN - SCOPUS:77955115364
SN - 1089-5639
VL - 114
SP - 7892
EP - 7897
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 30
ER -