Kalman filter estimation for periodic autoregressive-moving average models

C. Jimenez, A. I. McLeod, K. W. Hipel

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

20 Citas (Scopus)

Resumen

An exact maximum likelihood procedure is presented for estimating the parameters of a periodic autogressive-moving average (PARMA) model. To develop an estimator which is both statistically and computationally efficient, the PARMA class of models is written using a state-space representation and a Kalman filtering algorithm is used to estimate the parameters. In order to demonstrate how to fit PARMA models in practice, the most appropriate types of PARMA models are identified for fitting to two average monthly riverflow time series and the new estimator is employed for estimating the model parameters.

Idioma originalInglés
Páginas (desde-hasta)227-240
Número de páginas14
PublicaciónStochastic Hydrology and Hydraulics
Volumen3
N.º3
DOI
EstadoPublicada - sep. 1989
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Kalman filter estimation for periodic autoregressive-moving average models'. En conjunto forman una huella única.

Citar esto