Ladders and fan graphs are cycle-antimagic

Martin Bača, Pon Jeyanthi, Narayanaperumal Thillaiammal Muthuraja, Pothukutti Nadar Selvagopal, Andrea Semaničová-Feňovčíková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)


A simple graph G = (V, E) admits an H-covering if every edge in E belongs to at least one subgraph of G isomorphic to a given graph H. The graph G admitting an H-covering is (a, d)-H-antimagic if there exists a bijection f: (formula presented)such that, for all subgraphs H of G isomorphic to H, the H-weights, (formula presented), form an arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper we prove the existence of super (a, d)-H-antimagic labelings of fan graphs and ladders for H isomorphic to a cycle.

Idioma originalInglés
Páginas (desde-hasta)1093-1106
Número de páginas14
PublicaciónHacettepe Journal of Mathematics and Statistics
EstadoPublicada - 2020
Publicado de forma externa


Profundice en los temas de investigación de 'Ladders and fan graphs are cycle-antimagic'. En conjunto forman una huella única.

Citar esto