Learning from multiple classifier systems: Perspectives for improving decision making of QSAR models in medicinal chemistry

Hai Pham-The, Nguyen Hai Nam, Doan Viet Nga, Dang Thanh Hai, Karel Diéguez-Santana, Yovani Marrero-Ponce, Juan A. Castillo-Garit, Gerardo M. Casañola-Martin, Huong Le-Thi-Thu

Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

7 Citas (Scopus)

Resumen

Quantitative Structure - Activity Relationship (QSAR) modeling has been widely used in medicinal chemistry and computational toxicology for many years. Today, as the amount of chemicals is increasing dramatically, QSAR methods have become pivotal for the purpose of handling the data, identifying a decision, and gathering useful information from data processing. The advances in this field have paved a way for numerous alternative approaches that require deep mathematics in order to enhance the learning capability of QSAR models. One of these directions is the use of Multiple Classifier Systems (MCSs) that potentially provide a means to exploit the advantages of manifold learning through decomposition frameworks, while improving generalization and predictive performance. In this paper, we presented MCS as a next generation of QSAR modeling techniques and discuss the chance to mining the vast number of models already published in the literature. We systematically revisited the theoretical frameworks of MCS as well as current advances in MCS application for QSAR practice. Furthermore, we illustrated our idea by describing ensemble approaches on modeling histone deacetylase (HDACs) inhibitors. We expect that our analysis would contribute to a better understanding about MCS application and its future perspectives for improving the decision making of QSAR models.

Idioma originalInglés
Páginas (desde-hasta)3269-3288
Número de páginas20
PublicaciónCurrent Topics in Medicinal Chemistry
Volumen17
N.º30
DOI
EstadoPublicada - 1 dic. 2017

Huella

Profundice en los temas de investigación de 'Learning from multiple classifier systems: Perspectives for improving decision making of QSAR models in medicinal chemistry'. En conjunto forman una huella única.

Citar esto