Leveraging Deep Learning Techniques for Marine and Coastal Wildlife Using Instance Segmentation: A Study on Galápagos Sea Lions

Alisson Constantine-Macías, Alexander Toala-Paz, Miguel Realpe, Jenifer Suárez-Moncada, Diego Páez-Rosas, Enrique Peláez Jarrín

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Instance segmentation is a powerful deep learning technique that goes beyond traditional object detection by identifying and delineating individual objects within an image. This study evaluates several algorithms for instance segmentation of sea lions from video frames captured in the Galápagos Islands. The YOLO v8 and v9 models demonstrated superior metric values compared to other models, including those based on Detectron2 with a Mask R-CNN backbone. The study addressed challenges such as species proximity during group activities, variability in lighting conditions and image quality. YOLO v8 achieved an average precision (AP50) rate of 97.90%, while YOLO v9 achieved a precision rate of 98.2% for sea lion instance segmentation. These results provide valuable resources for future analysis of wildlife monitoring methods across diverse natural environments, with significant implications for conservation.

Idioma originalInglés
Título de la publicación alojadaETCM 2024 - 8th Ecuador Technical Chapters Meeting
EditoresDavid Rivas-Lalaleo, Soraya Lucia Sinche Maita
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350391589
DOI
EstadoPublicada - 2024
Evento8th IEEE Ecuador Technical Chapters Meeting, ETCM 2024 - Cuenca, Ecuador
Duración: 15 oct. 202418 oct. 2024

Serie de la publicación

NombreETCM 2024 - 8th Ecuador Technical Chapters Meeting

Conferencia

Conferencia8th IEEE Ecuador Technical Chapters Meeting, ETCM 2024
País/TerritorioEcuador
CiudadCuenca
Período15/10/2418/10/24

Huella

Profundice en los temas de investigación de 'Leveraging Deep Learning Techniques for Marine and Coastal Wildlife Using Instance Segmentation: A Study on Galápagos Sea Lions'. En conjunto forman una huella única.

Citar esto