Local antimagic chromatic number for copies of graphs

Martin Bača, Andrea Semaničová-Feňovčíková, Tao Ming Wang

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

An edge labeling of a graph G = (V, E) using every label from the set {1, 2, …, |E(G)|} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.

Idioma originalInglés
Número de artículo1230
PublicaciónMathematics
Volumen9
N.º11
DOI
EstadoPublicada - 1 jun. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Local antimagic chromatic number for copies of graphs'. En conjunto forman una huella única.

Citar esto